a2 United States Patent
Aithal et al.

US009436725B1

US 9,436,725 B1
Sep. 6, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

(*) Notice:
2]
(22)

(1)

Filed:

Inventors:

Assignee:

Appl. No.:

Int. CL.
GO6F 15/177

Us)

LIVE DATA CENTER TEST FRAMEWORK

Applicant: Amazon Technologies, Inc., Reno, NV

Anirudh Balachandra Aithal, Seattle,

WA (US); Michael David Marr,
Monroe, WA (US)

Us)

Amazon Technologies, Inc., Reno, NV

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 567 days.

13/781,407

Feb. 28, 2013

GO6F 17/30

(52)
CPC
(58)
CPC

U.S. CL

(2006.01)
(2006.01)

GO6F 17/30386 (2013.01)

Field of Classification Search

GOGF 15/76

See application file for complete search history.

(56)

6,505,249
6,513,024
6,668,340
8,276,123
8,924,352
2002/0138443
2004/0044992

BL*
BL*
BL*
BL*
BL*
Al*

Al*

1/2003
1/2003
12/2003
9/2012
12/2014

9/2002

3/2004

References Cited

U.S. PATENT DOCUMENTS

2004/0044993 Al* 3/2004 Muller GO6F 11/3684
717/124

2004/0128651 Al* 7/2004 Lau GO6F 11/3664
717/124

2005/0015641 Al* 1/2005 Alur ... GO6F 11/1458
714/2

2007/0067587 Al* 3/2007 RoSSI ...cccoevvnnene. GO6F 11/1461
711/162

2007/0143827 Al* 6/2007 Nicodemus GO6F 21/6218
726/2

2008/0059610 Al* 3/2008 Lincccoooveinnn GOG6F 9/5061
709/220

2008/0086719 Al* 42008 Clemenceau GO6F 9/44505
717/121

2008/0183309 Al* 7/2008 Beers GOG6F 9/4411
700/17

2009/0187588 Al* 7/2009 Thambiratnam . GO6F 17/30094
2010/0146514 Al* 6/2010 Alexander GO6F 11/3688
718/104

2011/0066708 Al1* 3/2011 Schran GO06Q 20/382
709/221

2013/0019242 Al1* 1/2013 Chenccccocene. HO4L 41/145
718/1

2013/0035909 Al* 2/2013 Douadycccccocvirninnn 714/37
2014/0279922 Al* 9/2014 Kottomtharayil GOG6F 9/505
703/2

OTHER PUBLICATIONS

U.S. Appl. No. 13/781,347, filed Feb. 28, 2013, Aithal et al.
U.S. Appl. No. 13/781,376, filed Feb. 28, 2013, Aithal et al.

* cited by examiner

Primary Examiner — Philip Chea
Assistant Examiner — Wuji Chen
(74) Attorney, Agent, or Firm — Baker & Hostetler LLP

(57) ABSTRACT

Rehkopf ..o, HO4L 29/06 Systems and methods are described for testing computing
] 702/182 resources. In one embodiment, a search space of computing
Li i GOGN 99/005 settings is analyzed in accordance with weighted data that
Bak 706/13 maps computing performance parameters with the comput-
(<) TN GOGF 11/3688 s . s s s
714/26 ing settings. A subset of the computing settings is selected to
DeNg. weoevvrrrrerersn, GOGF 11/368 generate a test population to optimize at least one computing
714/37 performance parameter. One or more computing devices in
Andruss GOGF 11/1461 a computing environment are configured in accordance with
707/640 the test population, and the test conditions are iteratively
Schran ... G06Q 20/382 updated based on test results in accordance with the test
705/64 population and a fitness function.
Muller GOGF 11/3684
717/124 9 Claims, 8 Drawing Sheets
) 100~ .
- Server | VM
h 130 110
/ gl

Gateway
190

Y

Test Generation
Framework
180

Computing Resource
140

US 9,436,725 B1

Sheet 1 of 8

Sep. 6, 2016

U.S. Patent

l "Old

82inosay bupndwon

ovi

g

0cl
Jonieg

08T
ylomaiuel

uoneleuan) 189 |

A

061
Rema)eo)

001

US 9,436,725 B1

Sheet 2 of 8

Sep. 6, 2016

U.S. Patent

¢ 9Old

FETNETS

- ===

| senoy

rllllf_‘m

Jebeuepy

A NA

\— eg)7

0l¢ |8ue) BleQ

0€C YHomeN
SUOIEOIUNWILOYD

U.S. Patent Sep. 6, 2016 Sheet 3 of 8 US 9,436,725 B1

A
o
o))
£
//g \\
/ \
\ I =
\ ! O
*’/ g —
A 9 > TH
- h <
(32
2 Lj/'g’\\ 5
™ 2 O D
/2 \ £
;@ \ ©
l \ T
{ |
\ /
\ /
\ /
[am] e
(@] —_——
N o
N
5 &
- -
g Jejaweled

US 9,436,725 B1

Sheet 4 of 8

Sep. 6, 2016

U.S. Patent

/ J— N
08t
{ ylomaweid
\ uopesmusnise]
a . —— o -
JonIeg
9oINIBS
Jswabeuepy
S _— S / \
gov Zov | 90v a_omamo
WA | Joasesg NA \ /
o S ov
; / /
Sy \ 80IAIS
L Homsuield \, : LoneaYD
. sBuipes slemwii HEOULIOA
Ny = N uonenbijuoc))

0cv
JoAIBg
{147 {74 [447
WA WA WA
F4%% %%
NA | Jonieg
/,

U.S. Patent

Sep. 6, 2016

502
receiving request to fest
computing parameter

'

504
searching information

;

206
generate test population

l

508
execute test population

510
performance criteria
achieved with
confidence?

NO
Y

914
update test population

FIG. 5

Sheet 5 of 8

US 9,436,725 B1

512
output results

U.S. Patent

B—

Sep. 6, 2016 Sheet 6 of 8 US 9,436,725 B1

602
maintaining computing
configurations

'

604
receiving a computing
setting

:

606
selecting computing
device

'

608
determining initial test
population

'

610
configuring candidate

computing devices

612
performance goal
achieved?

616
update test population

614
output results

FIG. 6

U.S. Patent

Sep. 6, 2016 Sheet 7 of 8

702
receiving a set of
parameters

;

704
analyzing search space

:

706
identifying computing
devices for testing

108

configuring the
computing devices

!

710
causing performance of
fests

712
test space
exhausted?

114
updating search space

US 9,436,725 B1

716
terminate tests

FIG. 7

U.S. Patent

Sep. 6, 2016 Sheet 8 of 8
800
start
802
receive API
request
804 806
generate test analysis
objectives service
806
generaie test
population
808
iteratively d8t1_4t t
S ———
execute test upcate 1es
population parameters
810 812
ob';,ai—v request
acixievegg NO—» updated test
‘ parameters

YES

816

m
3
o

FIG. 8

US 9,436,725 B1

US 9,436,725 Bl

1
LIVE DATA CENTER TEST FRAMEWORK

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is related by subject matter to the fol-
lowing commonly assigned applications: U.S. patent appli-
cation Ser. No. 13/781,347, entitled “TEST GENERATION
SERVICE” and U.S. patent application Ser. No. 13/781,376,
entitled “AUTOMATED TEST GENERATION SERVICE,”
both filed on Feb. 28, 2013, the entirety of which is hereby
incorporated by reference.

BACKGROUND

A data center is one example of a computing environment
that houses computer systems and various networking, stor-
age and other related components. Many organizations and
businesses operate and maintain data centers to provide
computing and information services to support their day-to-
day operations. Data centers may also provide computing
services on a permanent or an as-needed basis to businesses
and individuals as a remote computing service or to provide
“platforms as a service” or “software as a service” (e.g.,
cloud computing). The computing resources provided by a
data center may include various types of resources, such as
data processing resources, data storage resources, data com-
munication resources and the like. To facilitate increased
utilization of data center resources, virtualization technolo-
gies may allow a single physical computing machine to host
one or more instances of virtual machines (VMs) that appear
and operate as independent computer machines to a
remotely connected computer user. Customers of a data
center may sometimes request changes to a virtual machine
instance or request a particular configuration. The data
center may also add new computing resources or update
existing computing resources. The data center may confirm
that such updates and changes meet performance criteria.

BRIEF DESCRIPTION OF DRAWINGS

Throughout the drawings, reference numbers may be
reused to indicate correspondence between referenced ele-
ments. The drawings are provided to illustrate example
embodiments described herein and are not intended to limit
the scope of the disclosure.

FIG. 1is a diagram illustrating a mechanism for providing
an automated test generation framework in accordance with
the present disclosure;

FIG. 2 illustrates an example computer system that may
be used in some embodiments;

FIG. 3 is a diagram illustrating test coverage of computing
settings;

FIG. 4 is a diagram illustrating a mechanism for providing
an automated test generation framework in accordance with
the present disclosure;

FIG. 5 is a flowchart depicting an example procedure for
providing an automated test generation framework in accor-
dance with the present disclosure;

FIG. 6 is a flowchart depicting an example procedure for
providing an automated test generation framework in accor-
dance with the present disclosure;

FIG. 7 is a flowchart depicting an example procedure for
providing an automated test generation framework in accor-
dance with the present disclosure; and

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 8 is a flowchart depicting an example procedure for
providing an automated test generation framework in accor-
dance with the present disclosure.

DETAILED DESCRIPTION

The following detailed description is directed to technolo-
gies for the automatic generation of tests in a computing
environment. In the examples described herein, a data center
is one example computing environment in which the
described embodiments can be implemented. However, the
described concepts can apply generally to other computing
environments, for example across multiple data centers or
locations.

In a computing environment such as a data center, numer-
ous computing and network settings can be adjusted. For
example, hardware settings such as firmware or Basic Input/
Output System (BIOS) settings may be updated. Network
settings and virtual machine settings may also be updated.
One issue that may arise when altering such settings is how
to test the new or updated settings. Because of the sheer
number and variety of computing resources in a data center,
it can be difficult to test and verify the changed settings, let
alone characterize the changed settings with respect to
specific performance metrics. It can also be difficult to
automate and manage the testing of such settings in a
production capacity.

The present disclosure describes a verification optimiza-
tion system that takes as input a test objective (e.g., new
hardware or software) and a test environment (e.g., network
type, hardware, etc.). The verification optimization system
may be configured to bias and analyze a number of test
parameters and constraints (e.g., time and resources) and
generate a test matrix or test population that optimizes the
test coverage space given the test constraints. The verifica-
tion optimization system may use search and optimization
methods such as a fitness function to optimize the coverage.
The verification optimization system can also be configured
to interact with capacity management systems to create and
manage test workflows by querying and changing comput-
ing settings, mapping the computing settings to specific
hardware, changing and managing the settings in a con-
trolled manner, execute the tests and removing/bringing
affected devices back into service. The verification optimi-
zation system can thus be used as part of a test workflow for
verifying performance and operation of computing configu-
rations. The verification optimization system can also be
used as part of a production workflow to configure and
verify capacity at runtime so that system configurations with
different computing settings can be available for customers.

FIG. 1 is a diagram illustrating a computing environment
100 including a mechanism for providing a verification
optimization system in accordance with the present disclo-
sure. In the present disclosure, a verification optimization
system may also be referred to as a test matrix generation
service, a test population generation service or an automated
test generation framework. The terms may be used inter-
changeably. Referring to FIG. 1, computing environment
100 may include a virtual machine instance 110 that may
execute, for example, on a server computer 130. It will be
appreciated that some embodiments may involve additional
virtual machine instances that may be instantiated on addi-
tional server computers in computing environment 100.
Computing environment 100 may also include a computing
resource 140 that may be, for example, a storage device or
another computing device.

US 9,436,725 Bl

3

FIG. 1 also illustrates a public network 150 that may
include one or more computing devices such as computers
160 and 170. According to one embodiment, virtual machine
instance 110 may be configured to provide computing ser-
vices to a computer user (not shown) of public network 150
via a gateway 190 and computers 160 and 170. For example,
virtual machine instance 110 may provide a set of remote
access enterprise applications to a group of users who may,
for example, be employees of an enterprise customer.

A user, administrator, service or any computing resource
in computing environment 100 may send a request to an
automated test generation framework 180 for verification of
a particular computing setting. Alternatively, the request
may indicate that a computing device will be upgraded and
that computing settings will be affected. In one embodiment,
automated test generation framework 180 may access data
indicating computing resources and their configurations, and
which resources that have been determined to be capable of
hosting and testing various computing settings. By accessing
such data, computing automated test generation framework
180 can efficiently identify and allocate computing resources
for responding to computing setting requests and verifying
the settings. Such settings may be requested directly by a
customer of the data center, by an administrator of the data
center, a service or any computing resource within the data
center such as server 130. Server 130 may also send a
request on behalf of itself or on behalf of other servers.

The information regarding available computing devices
for testing may be prioritized based on factors such as cost
and policy information. Automated test generation frame-
work 180 may access information describing test parameters
and performance metrics or benchmarks, verification results
and verification schedules. Automated test generation frame-
work 180 may also access previously conducted verification
results and verification schedules. Automated test generation
framework 180 may send information regarding the test
results to the requestor.

FIG. 2 illustrates an example computing environment in
which the embodiments described herein may be imple-
mented. FIG. 2 is a diagram schematically illustrating an
example of a data center 210 that can provide computing
resources to users 200a and 2005 (which may be referred
herein singularly as “auser 200” or in the plural as “the users
200”) via user computers 202a and 2026 (which may be
referred herein singularly as “a computer 202” or in the
plural as “the computers 202”) via a communications net-
work 230. Data center 210 may, for example, correspond to
computing environment 100 in FIG. 1.

Data center 210 may be configured to provide computing
resources for executing applications on a permanent or an
as-needed basis. The computing resources provided by data
center 210 may include various types of resources, such as
data processing resources, data storage resources, data com-
munication resources and the like. Each type of computing
resource may be general-purpose or may be available in a
number of specific configurations. For example, data pro-
cessing resources may be available as virtual machine
instances. The instances may be configured to execute
applications, including Web servers, application servers,
media servers, database servers and the like. Data storage
resources may include file storage devices, block storage
devices and the like.

Each type or configuration of computing resource may be
available in different sizes, such as large resources—con-
sisting of many processor cores, large amounts of memory
and/or large storage capacity—and small resources—con-
sisting of fewer processor cores, smaller amounts of

20

30

40

45

50

55

4

memory and/or smaller storage capacity. Customers may
choose to allocate a number of small processing resources as
Web servers and/or one large processing resource as a
database server, for example.

Data center 210 may include servers 216a and 2165
(which may be referred herein singularly as “a server 216”
or in the plural as “the servers 216”) that provide computing
resources available as virtual machine instances 218 (which
may be referred herein singularly as “a virtual machine
instance 218” or in the plural as “the virtual machine
instances 218”). As shown in FIG. 2, at any given time some
servers such as server 2164 may host one or more virtual
machine instances 218, while other servers such as server
2165 do not host virtual machines. The virtual machine
instances 218 may be configured to execute applications,
including Web servers, application servers, media servers,
database servers, and the like. Other resources that may be
provided include data storage resources (not shown), and
may include hard drives, solid state storage drives or other
storage devices and the like.

The availability of virtualization technologies for com-
puting hardware has provided benefits for providing large
scale computing resources for customers and allowing com-
puting resources to be efficiently and securely shared
between multiple customers. For example, virtualization
technologies such as those provided by VMware or other
virtualization systems may allow a physical computing
device to be shared among multiple users by providing each
user with one or more virtual machine instances hosted by
the physical computing device. A virtual machine instance
may be a software emulation of a particular physical com-
puting system that acts as a distinct logical computing
system. Such a virtual machine instance provides isolation
among multiple operating systems sharing a given physical
computing resource. Furthermore, some virtualization tech-
nologies may provide virtual resources that span one or
more physical resources, such as a single virtual machine
instance with multiple virtual processors that spans multiple
distinct physical computing systems.

Referring to FIG. 2, communications network 230 may,
for example, be a publicly accessible network of linked
networks and possibly operated by various distinct parties,
such as the Internet. In other embodiments, communications
network 230 may be a private network, such as, for example,
a corporate or university network that is wholly or partially
inaccessible to non-privileged users. In still other embodi-
ments, communications network 230 may include one or
more private networks with access to and/or from the
Internet.

Communication network 230 may provide access to com-
puters 202. User computers 202 may be computers utilized
by users 200 or other users of data center 210. For instance,
user computer 202a or 2025 may be a server, a desktop or
laptop personal computer, a tablet computer, a wireless
telephone, a personal digital assistant (PDA), an e-book
reader, a game console, a set-top box or any other computing
device capable of accessing data center 210. User computer
202a or 2025 may connect directly to the Internet (e.g., via
a cable modem or a Digital Subscriber Line (DSL)).
Although only two user computers 202a and 2025 are
depicted, it should be appreciated that there may be multiple
user computers.

User computers 202 may also be utilized to configure
aspects of the computing resources provided by data center
210. In this regard, data center 210 might provide a Web
interface through which aspects of its operation may be
configured through the use of a Web browser application

US 9,436,725 Bl

5

program executing on user computer 202. Alternatively, a
stand-alone application program executing on user computer
202 might access an application programming interface
(API) exposed by data center 210 for performing the con-
figuration operations. Other mechanisms for configuring the
operation of the data center 210, including deploying
updates to an application, might also be utilized.

Servers 216 shown in FIG. 2 may be standard servers
configured appropriately for providing the computing
resources described above and may provide computing
resources for executing one or more applications. In one
embodiment, the computing resources may be virtual
machine instances 218. In the example of virtual machine
instances, each of the servers 216 may be configured to
execute an instance manager 220a (which may be referred
herein singularly as “an instance manager 220 or in the
plural as “the instance managers 220”") capable of executing
the virtual machine instances 218. The instance managers
220 may be a virtual machine monitor (VMM) or another
type of program configured to enable the execution of virtual
machine instances 218 on server 216, for example. As
discussed above, each of the virtual machine instances 218
may be configured to execute all or a portion of an appli-
cation.

It should be appreciated that although the embodiments
disclosed above discuss the context of virtual machine
instances, other types of implementations can be utilized
with the concepts and technologies disclosed herein. For
example, the embodiments disclosed herein might also be
utilized with computing systems that do not utilize virtual
machine instances.

In the example data center 210 shown in FIG. 2, a router
214 may be utilized to interconnect the servers 216a and
216b. Router 214 may also be connected to gateway 240,
which is connected to communications network 230. Router
214 may manage communications within networks in data
center 210, for example by forwarding packets or other data
communications as appropriate based on characteristics of
such communications (e.g., header information including
source and/or destination addresses, protocol identifiers,
etc.) and/or the characteristics of the private network (e.g.,
routes based on network topology, etc.). It will be appreci-
ated that, for the sake of simplicity, various aspects of the
computing systems and other devices of this example are
illustrated without showing certain conventional details.
Additional computing systems and other devices may be
interconnected in other embodiments and may be intercon-
nected in different ways.

It should be appreciated that the network topology illus-
trated in FIG. 2 has been greatly simplified and that many
more networks and networking devices may be utilized to
interconnect the various computing systems disclosed
herein. These network topologies and devices should be
apparent to those skilled in the art.

It should also be appreciated that data center 210
described in FIG. 2 is merely illustrative and that other
implementations might be utilized. Additionally, it should be
appreciated that the functionality disclosed herein might be
implemented in software, hardware or a combination of
software and hardware. Other implementations should be
apparent to those skilled in the art. It should also be
appreciated that a server, gateway or other computing device
may comprise any combination of hardware or software that
can interact and perform the described types of functionality,
including without limitation desktop or other computers,
database servers, network storage devices and other network
devices, PDAs, tablets, cellphones, wireless phones, pagers,

20

35

40

45

55

6

electronic organizers, Internet appliances, television-based
systems (e.g., using set top boxes and/or personal/digital
video recorders) and various other consumer products that
include appropriate communication capabilities. In addition,
the functionality provided by the illustrated modules may in
some embodiments be combined in fewer modules or dis-
tributed in additional modules. Similarly, in some embodi-
ments the functionality of some of the illustrated modules
may not be provided and/or other additional functionality
may be available.

The capacity of purchased computing resources provided
by data center 210 can be scaled in response to demand. In
this regard, scaling refers to the process of instantiating
(which may also be referred to herein as “launching” or
“creating”) or terminating (which may also be referred to
herein as “de-scaling™) instances of computing resources in
response to demand. In this manner, the capacity of
resources purchased by a customer of data center 210 can be
scaled on-demand.

Auto scaling is one mechanism for scaling computing
resources in response to increases or lulls in demand for the
resources. Auto scaling allows customers of data center 210
to configure data center 210 to scale their purchased com-
puting resources according to conditions defined by the
customer. For instance, rules may be defined for scaling up
capacity in a particular manner in response to the occurrence
of' specified conditions, such as a spike in demand. Similarly,
rules might also be defined to scale down capacity in a
particular manner in response to the occurrence of other
conditions, such as a lull in demand. The mechanisms
disclosed herein for launching virtual machine instances
might be utilized when instances are manually launched by
a customer or when instances are launched by an auto
scaling component in data center 210. In some embodi-
ments, the auto scaling service may provide increased per-
formance by adding more resources such as by adding
virtual machine instances. In other embodiments, the auto
scaling service may provide increased performance by
changing or increasing the capacity of a virtual machine
instance. For example, a user may be allocated a virtual
machine instance on a server with a 1 Gbps network
interface card (NIC). During increased demand, the allo-
cated virtual machine instance may be scaled to a different
virtual machine instance on a server with a 10 Gbps NIC.

Data center 210 may also be configured with a deploy-
ment component to assist customers in the deployment of
new instances of computing resources. The deployment
component may receive a configuration from a customer that
includes data describing how new instances should be
configured. For example, the configuration might specify
one or more applications or software components that
should be installed in new instances, provide scripts and/or
other types of code to be executed in new instances and other
types of information. The deployment component utilizes
the customer-provided configuration to launch and configure
customer workloads on computing resources.

Various aspects of the disclosure are now described with
regard to certain examples and embodiments, which are
intended to illustrate but not to limit the disclosure. It should
be appreciated that the subject matter presented herein may
be implemented as a computer process, a computer-con-
trolled apparatus, a computing system or an article of
manufacture, such as a computer-readable storage medium.
While the subject matter described herein is presented in the
general context of program modules that execute on one or
more computing devices, those skilled in the art will rec-
ognize that other implementations may be performed in

US 9,436,725 Bl

7

combination with other types of program modules. Gener-
ally, program modules include routines, programs, compo-
nents, data structures and other types of structures that
perform particular tasks or implement particular abstract
data types.

Those skilled in the art will also appreciate that the subject
matter described herein may be practiced on or in conjunc-
tion with other computer system configurations beyond
those described herein, including multiprocessor systems,
microprocessor-based or programmable consumer electron-
ics, minicomputers, mainframe computers, handheld com-
puters, personal digital assistants, e-readers, cellular tele-
phone devices, special-purposed hardware devices, network
appliances and the like. The embodiments described herein
may also be practiced in distributed computing environ-
ments, where tasks are performed by remote processing
devices that are linked through a communications network.
In a distributed computing environment, program modules
may be located in both local and remote memory storage
devices.

In the following detailed description, references are made
to the accompanying drawings that form a part hereof, and
that show, by way of illustration, specific embodiments or
examples. The drawings herein are not drawn to scale. Like
numerals represent like elements throughout the several
figures.

In a data center environment, it is desirable to test
computing configurations by iterating through various set-
tings in a controlled way to determine optimal test settings
for a particular computing configurations. When new hard-
ware configurations are added, for example, fleet fragmen-
tation can result and the overall ability of the computing
environment to meet performance goals and manage capac-
ity can be compromised. By thoroughly testing computing
configurations, it is possible to achieve greater integration of
the computing configuration into the computing environ-
ment’s products and services. And by testing a variety of
configurations, a given set of hardware may be determined
to be able to support a number of different computing
settings. Pools or groupings of computing resources can be
identified based on such capabilities and maintained based
on frequently used settings and configurations.

When a customer requests a particular setting that
requires a change to a computing setting that is not currently
provided by the data center, a service in the data center such
as automated test generation framework 180 of FIG. 1 that
is implemented in one or more computing devices may be
invoked. Automated test generation framework 180 may, in
conjunction with other services, be configured to determine
a suitable computing device that may can potentially accom-
modate the setting, initiate a workflow to update and validate
the particular setting and report that the update has been
verified and that the computing device is ready to provide
the particular setting to the customer. The particular setting
may also be made available to other customers who may
request similar settings.

In various embodiments, an automated test generation
framework such as automated test generation framework
180 of FIG. 1 may be implemented in one or more com-
puting devices and configured to receive requests to verify
computing settings. Automated test generation framework
180 may be configured to determine one or more test
conditions that will verify the requested computing setting.
Automated test generation framework 180 can be imple-
mented across several computing devices or on one com-
puting device.

25

40

45

8

Automated test generation framework 180 may create
workflows to update and validate specific settings on spe-
cific resources (i.e., servers). Automated test generation
framework 180 may also identify one or more resources that
already include the requested setting or identify one or more
settings that can be updated to provide the requested setting.
For example, automated test generation framework 180 may
track pools of resources (i.e., servers) that can support a
given settings configuration. Automated test generation
framework 180 may create also workflows to update and
validate specific settings on specific computing resources.
Automated test generation framework 180 may also be
configured to optimize the placement for requested
resources that have particular computing settings require-
ments based on various factors such as minimization of
disruption to existing services.

In some embodiments, automated test generation frame-
work 180 may be configured to interact with other comput-
ing environment services such as a fleet management ser-
vice, a capacity pool management service and a
configuration management service to provide the above
described capabilities. For example, when a request for a
computing setting is received and it is determined that the
computing setting requires firmware changes that have not
been previously verified, the configuration management
service can identify a set of firmware settings that needs to
be tested and verified to confirm that the settings meet the
computing environment criteria. The configuration manage-
ment service can also determine which of the settings are
best suited to comply with the requested computing setting.
Automated test generation framework 180 may determine a
suitable test matrix and test the firmware settings.

In some embodiments, automated test generation frame-
work 180 may be configured to include an expert system and
a knowledge base to provide a decision-making capability
regarding the search and selection of test conditions. The
expert system can include, for example, an artificial intelli-
gence (Al) system that includes or has access to historical
data, a human system expert who can make decisions
regarding the computing setting, a database of settings, and
the like. The expert system can consider benchmarks or
metrics such as system throughput, processor utilization and
network bandwidth. Furthermore, automated test generation
framework 180 may employ one or more fitness functions to
determine how close a given test sample is to achieving one
or more test objectives. The fitness function may be used to
perform permutation testing and determine optimal test
settings. In one embodiment, a genetic algorithm may be
used as a search heuristic to efficiently determine searches
for satisfactory test conditions.

When a change is implemented in a computing environ-
ment such as data center 210, it is desirable to perform one
or more tests to verify that the change provides the func-
tionality associated with the change and that the computing
environment otherwise continues to function as expected
and meets predetermined metrics or benchmarks. Changes
that may be tested can include, for example, hardware or
software changes, firmware changes or changes in a con-
figuration or arrangement such as a change in the network
topology. It can be appreciated that testing may be desirable
in response to any number of changes within or outside the
computing environment. The principles described herein are
applicable to any situation where testing in a computing
environment is desirable.

Many computing environments such as data centers are
large and complex and can include a vast number of inter-
connected devices. Technologies such as virtualization can

US 9,436,725 Bl

9

increase the complexity. Computing environments thus may
include a mix of various types of data flowing through both
virtual and physical components. Computing devices such
as servers and routers may have complex interactions, and
behaviors in one area can affect the performance of the entire
computing environment. Changes in the computing envi-
ronment should therefore be tested not only in its local
environment but in conjunction with other devices in the
computing environment to ensure that the computing envi-
ronment on the whole provides an expected level of perfor-
mance. Furthermore, the tests should be repeatable and
relevant to metrics or benchmarks of interest. Metrics or
benchmarks may include performance metrics that indicate
how the computing environment performs under load. Per-
formance metrics are useful for capacity planning and
ensuring customer satisfaction. Such performance metrics
may include throughput, latency and data loss.

As the number of computing devices in a computing
environment increases, the scope of potential parameters,
test interfaces and performance metrics may increase dra-
matically. This makes it extremely difficult for test admin-
istrators and planners to analyze the configurations and
parameters to identify a set of tests that can verify the
changes and satisfy applicable performance metrics.

In various embodiments disclosed herein, a computing
environment such as data center 210 of FIG. 2 may imple-
ment a test framework such as automated test generation
framework 180 of FIG. 1. Furthermore, the computing
environment may maintain a database of information for
tracking data related to various computing configurations
including, for example, processors, network, disk and other
peripheral devices, and test parameters. Search algorithms
can be used to identify test a population or test matrix for
testing a particular change or setting in the computing
environment. In some embodiments, the test matrix or test
population (the terms may be used interchangeably) may
comprise a parameterized set of workload definitions, con-
figuration management definitions, and/or performance
parameters that are to be evaluated. A fitness function may
be used to define cost and exit criteria and may be consid-
ered a part of the test population. Workload definitions may
be determined as a function of the cost and configuration
parameters being tested. The configuration management
definitions may be a function of the configuration under test.
As the complexity of a computing environment increases,
the search space of possible test conditions can grow expo-
nentially. In some cases, it may be difficult or impossible to
identify a finite number of test conditions within a reason-
able time and cost constraint that can completely verify a
computing setting. In some embodiments, the search space
may be analyzed to identify a candidate test population that
satisfies a set of criteria or constraints. In one embodiment,
the candidate test population may comprise a subset of
possible test conditions that satisfy the criteria or constraints
in accordance with a fitness function.

Accordingly, one or more metrics or benchmarks for
evaluating the fitness of a parameter can be identified for the
computing settings that are to be verified. Automated test
generation framework 180 can then be used to generate tests
to optimize the level and scope of verification within a set of
constraints. Once a test population has been generated,
automated test generation framework 180 may cause the
automatic configuration of the settings on one or more
computing devices in the computing environment. In an
embodiment, the computing devices may be selected by
mapping samples of the search space to available computing
resources, modifying the computing resources and running

10

15

20

25

30

35

40

45

50

55

60

65

10

tests on the modified computing resources. Additionally, the
results of an initial test population can provide feedback to
automated test generation framework 180 and can be used to
determine a new set of test conditions to further optimize the
test matrix.

As discussed above, a fitness function can be used to
determine a matrix of test conditions to verify a change or
setting. Any one of various fitness functions that can deter-
mine the closeness of a candidate solution to an objective
can be used. A genetic function is one example of a heuristic
search function that can be used for search and optimization
of the test conditions. In one example of a typical genetic
algorithm approach, an initial set of test conditions may be
selected. In the present disclosure, a set of test conditions
may include one or more settings in a computing environ-
ment that may be controlled (e.g., small network queue sizes
vs. large network queue sizes). In some cases, a set of test
conditions may be referred to as a test matrix or test
population. After the initial set of test conditions has been
selected, the fitness of each test condition may be evaluated.
The fitness may be evaluated by using the fitness function to
determine the closeness to a selected objective within a
predetermined threshold. The fitness function will depend
on the particular setting or metric that is to be measured. In
some cases, a simulated approach such as computational
fluid dynamics may be used to determine the fitness. Addi-
tional candidates can be identified based on cross-breeding
as well as results of an initial round of tests. The fitness of
new candidates can be evaluated and the process may be
repeated until an outcome within a predetermined threshold
has been reached. The predetermined outcome can be based
on satisfaction of a minimum criterion or threshold or
reaching an allocated budget. Another example of a prede-
termined outcome is reaching a point where additional
iterations do not achieve produce appreciable changes in the
results.

In one embodiment, candidates can be selected based on
biasing to influence the selection. For example, the data in
the sample space can be weighted to indicate relevance of
the parameters to one or more metrics, thus resulting in an
increased likelihood of optimizing around the selected met-
rics. In an embodiment, the sample space can include
metadata to indicate biasing with respect to various param-
eters. The parameters can relate to system performance
parameters (e.g., networking) or can be specific to hardware
(e.g., disk drives and GPU). By using such metadata, the
weights can indicate, for example, that some parameters are
only relevant to certain metrics while having no impact on
other metrics.

The weights can also be used to eliminate some variables
from consideration. For example, in some cases the fitness
of a particular sample may be zero, indicating that a par-
ticular setting is non-distinguishing for a given metric. In
this case a zero weight can be used to indicate that a
particular setting is unlikely to influence a given metric, thus
reducing the potential scope of the test matrix.

In wvarious embodiments, automated test generation
framework 180 may employ probabilistic methods to guide
and narrow the testing that is selected. In order to provide
realistic test results that more closely verify actual behavior
of'the computing environment, the most relevant test param-
eters should be selected. However, the complexity of com-
puting environments with hundreds or thousands of net-
worked devices may preclude a deterministic or exhaustive
solution. In some embodiments a heuristic model can be
used to find satisfactory solutions that provide an acceptable
confidence level in the results. For example, experience-

US 9,436,725 Bl

11

based techniques such as expert modeling can be used to aid
initial selection of tests. The heuristic model can probabi-
listically indicate parameters of likely impact through, for
example, tagging various metadata related to a particular
metric. Feedback from an initial round of tests can be used
to further refine the initial selection, thus implementing a
closed loop system that generates high impact tests in
situations where programmatic approaches may be imprac-
tical or infeasible. As an example, Markov modeling or
variations thereof (e.g., hidden Markov model and hierar-
chical hidden Markov model) can be used in some embodi-
ments to identify solutions that may otherwise be missed
using traditional methods. Monte Carlo methods, finite
element analysis and computational fluid analysis can also
be used to generate results in various embodiments.

In many computing environments the amount of resources
available for testing may be limited at any given time. For
example, in a typical data center the majority of resources
may continuously be in use in order to provide services for
customers. In some embodiments, automated test generation
framework 180 may interact with a fleet management sys-
tem. For example, automated test generation framework 180
may interact with a capacity management system to identify
spare or otherwise usable computing resources for testing
the settings. Additionally, the samples selected for testing
can be based on availability of spare resources and the
configuration of the spare resources. For example, the avail-
able test resources may include configurations that deviate
from the initially selected test matrix. The variances in the
test resources from the test matrix may be used to generate
a best available solution and update the test matrix.

In some embodiments, automated test generation frame-
work 180 may interact with a configuration management
system that may be implemented in the computing environ-
ment and configured to manage configurations. Such a
configuration management system may create and manage
workflows and map configurations to computing devices in
the computing environment. The configuration management
system can be part of a test workflow for verifying perfor-
mance and operation of various configurations. The con-
figuration management system may further comprise addi-
tional subsystems such as a firmware management
subsystem that manages firmware settings in the computing
environment.

Automated test generation framework 180 may interact
with the configuration management system and map desired
settings to available settings in the computing environment.
The available test resources may be evaluated to determine
the particular settings that are implemented on the test
resources. The settings that need to be changed to conform
to the desired test settings may be evaluated to determine the
scope of required changes and the cost associated with
updating the test resources. The cost associated with updat-
ing the test resources may be balanced against the value of
implementing the exact desired settings to determine if the
settings should be implemented. Automated test generation
framework 180 may thus incorporate a cost evaluation
mechanism that uses cost thresholds to determine if avail-
able settings are sufficiently close to the desired settings and
if the costs associated with updating the settings will provide
results of sufficient value. The information from the cost
evaluation mechanism may be provided as additional input
to the search algorithms to identify an optimized test matrix
that considers cost thresholds. In one embodiment, auto-
mated test generation framework 180 may interact with the
configuration management system to determine available
test resources and integrate information regarding available

10

15

20

25

30

35

40

45

50

55

60

65

12

settings and costs associated with the available settings to
achieving a desired population state and determine and
adjust the next set of tests. In some embodiments, the cost
evaluation mechanism can include an algorithm such as a
logic function that inputs various factors such as monetary
value of one or more resources required for testing and a
total maximum cost threshold. The cost evaluation mecha-
nism may be configured to analyze the inputs and determine
which test resources may be available to perform testing
based on the inputs.

By interacting with a fleet management infrastructure that
may include a configuration management system and other
fleet management subsystems, automated test generation
framework 180 can determine costs associated with loss of
revenue when candidate test resources are pulled from
production. The cost of removing a particular candidate
resource from production can be determined based on cur-
rent market conditions for the services provided by the
resource. This cost can be compared to the value of testing
the particular set of conditions to determine if the benefit of
testing exceeds the cost of pulling the resource. For
example, a current cost per minute of pulling a resource and
the expected time to conduct a set of tests may be deter-
mined. If the current cost per minute falls below a prede-
termined level, the automated test generation framework can
occupy the resource and conduct the tests.

FIG. 3 illustrates an example searching parameters in an
automated test generation system. FIG. 3 includes a two
dimensional graph 300 that indicates possible settings for a
Parameter A and Parameter B. Candidate setting 310 and
candidate setting 320 illustrate two sample points from a
search space that may be evaluated for a generated test
matrix. Corresponding areas of coverage area 315 corre-
sponding to setting 310 and coverage area 320 correspond-
ing to setting 325 may be evaluated to determine if the
covered regions sufficiently cover the sample space in accor-
dance with a fitness function.

FIG. 4 illustrates an example computing environment in
which the embodiments described herein may be imple-
mented. Referring to the figure, server computers 402, 410,
420 and 430 may communicate with a capacity management
service 404 to provide configuration information. Server
computer 402 may host virtual machine instances 406 and
408. Similarly, server computer 410 may host virtual
machine instance 412; server computer 420 may host virtual
machine instances 422, 424 and 426; and server computer
430 may host virtual machine instance 432.

Server computer 402 may send a request for an updated
computing configuration to capacity management service
404. Capacity management service 404 may interact with
configuration verification service 440 to request verification
of the updated computing configuration. Configuration veri-
fication service 440 may identify requirements for config-
uring an available server computer that can support the
updated computing configuration. For example, require-
ments may include device hardware and any software or
firmware that needs to be installed, or execution of a test to
verify that a virtual computing instance of a particular type
can function with updated computing configuration. The
information may also indicate when evaluation tasks can be
performed. For example, the information may include an
evaluation schedule that minimizes potential disruptions to
existing services being provided to customers.

Server computer 402 may also send a request for an
updated computing configuration to firmware settings
framework 445. In some embodiments, firmware settings
framework 445 may access a list of available firmware

US 9,436,725 Bl

13

baseline configurations. Firmware settings framework 445
may also maintain a record of groupings of computing
resources that have been determined to be capable of meet-
ing a predetermined baseline firmware configuration. By
maintaining such groupings, computing firmware settings
framework 445 can efficiently identify and allocate comput-
ing resources for responding to firmware setting requests.
Such settings may be requested directly by a customer of the
data center, by an administrator of the data center, a service
or any computing resource within the data center such as
server 430. Firmware settings framework 445 may interact
with configuration verification service 440 to request veri-
fication of the updated firmware configuration.

Configuration verification service 440 may interact with
test generation framework 180 that may automatically gen-
erate a test matrix based on desired test objectives, the
available server computer and its configuration and cost
considerations. Test generation framework 180 may cause
the conduct of verification tests and further update the test
matrix based on the tests.

Test generation framework 180 may reside on one or more
server computers or other computing resources in a data
center. Test generation framework 180 may in some embodi-
ments be managed by a VMM or other management soft-
ware executing in the data center. Test generation framework
180 may also execute on one or more virtual machines.

FIG. 5 illustrates an example operational procedure for
testing in a computing environment using an automated test
generation framework. In an embodiment, an automated test
generation framework can correspond to automated test
generation framework 180 in FIG. 1.

Referring to FIG. 5, operation 500 begins the operational
procedure. Operation 500 may be followed by operation
502. Operation 502 illustrates receiving a request to test a
computing parameter. In an embodiment, the request may be
received in a computing environment comprising a plurality
of computing devices providing computing resources.

Operation 502 may be followed by operation 504. Opera-
tion 504 illustrates searching information comprising set-
tings that can be controlled on one or more computing
devices in the computing environment. In some embodi-
ments, the searching may be based on metadata indicative of
relationships between the settings and corresponding
weighted performance metrics. Additionally or optionally,
the searching may be aided by expert intervention.

Operation 504 may be followed by operation 506. Opera-
tion 506 illustrates generating a test population that verifies
the computing parameter in accordance with a set of con-
straints for bounding a cost associated with the test popu-
lation. In an embodiment, the test population may comprise
a parameterized set of workload definitions, configuration
management definitions, and/or performance parameters
that are to be evaluated. A fitness function may be used to
define cost and exit criteria and may be considered a part of
the test population. Workload definitions may be determined
as a function of the cost and configuration parameters being
tested. The configuration management definitions may be a
function of the configuration under test.

Operation 506 may be followed by operation 508. Opera-
tion 508 illustrates executing the test population. Operation
508 may be followed by operation 510. If execution of the
test population demonstrates the desired performance crite-
ria within an acceptable confidence level and does not
require further updates, then operation 510 may be followed
by operation 512. Operation 512 illustrates outputting the
test population and/or the test results.

40

45

55

14

If the test population requires further updates, then opera-
tion 510 may be followed by operation 514. Operation 514
illustrates updating the test population. Operation 514 may
be followed by operation 508.

FIG. 6 illustrates an example operational procedure for
testing in a computing environment using an automated test
generation framework. In an embodiment, an automated test
generation framework can correspond to automated test
generation framework 180 in FIG. 1.

Referring to FIG. 6, operation 600 begins the operational
procedure. Operation 600 may be followed by operation
602. Operation 602 illustrates maintaining computing con-
figurations in a data center comprising a plurality of com-
puting devices. Operation 602 may be followed by operation
604. Operation 604 illustrates receiving a computing setting
related to the data center.

Operation 604 may be followed by operation 606. Opera-
tion 606 illustrates searching the computing configurations
for computing devices in the data center and selecting one or
more of the computing devices for testing the computing
setting based on a set of constraints. Operation 606 may be
followed by operation 608. Operation 608 illustrates deter-
mining an initial test population for testing the computing
setting based on metadata indicative of relationships
between the setting and corresponding weighted perfor-
mance metrics. Operation 608 may be followed by operation
610. Operation 610 illustrates configuring the selected one
of the computing devices in accordance with the test popu-
lation.

Operation 610 may be followed by operation 612. If the
initial set of test population does not require further updates
based on results from the testing or fitness analysis and
determining whether performance goals have been achieved,
then operation 612 may be followed by operation 614.
Operation 614 illustrates outputting the test population and/
or the test results.

Ifthe initial set of test population requires further updates,
then operation 612 may be followed by operation 616.
Operation 616 illustrates updating the test population.
Operation 616 may be followed by operation 610.

FIG. 7 illustrates an example operational procedure for
testing in a computing environment in a data center using an
automated test generation framework. In an embodiment, an
automated test generation framework can correspond to
automated test generation framework 180 in FIG. 1.

Referring to FIG. 7, operation 700 begins the operational
procedure. Operation 700 may be followed by operation
702. Operation 702 illustrates receiving a set of parameters
in a computing environment comprising a plurality of com-
puting devices.

Operation 702 may be followed by operation 704. Opera-
tion 704 illustrates analyzing a search space of computing
settings and selecting a subset of the computing settings
based a selection function to generate a test matrix for
testing the set of parameters. Operation 704 may be followed
by operation 706. Operation 706 illustrates identifying one
or more computing devices in the computing environment
for testing the set of parameters. In an embodiment, the
identifying can be based on criteria for managing availabil-
ity of the computing devices.

Operation 706 may be followed by operation 708. Opera-
tion 708 illustrates automatically configuring the one or
more computing devices in accordance with the test matrix.
Operation 708 may be followed by operation 710. Operation
710 illustrates causing performance of tests in accordance
with the test matrix and iteratively updating the test matrix
based on results of the testing and a fitness function.

US 9,436,725 Bl

15

Operation 710 may be followed by operation 712. If tests
have been verified in accordance with performance charac-
teristics based on a predetermined threshold, then operation
712 may be followed by operation 716. Operation 716
illustrates terminating the tests. If tests have not been
verified in accordance with performance characteristics
based on a predetermined threshold, then operation 712 may
be followed by operation 714 Operation 714 illustrates
updating the search space based on the test results. In some
embodiments, weighted parameters in the search space can
be adjusted to indicate relevance to one or more perfor-
mance metrics, thus resulting in an increased likelihood of
optimizing around metrics of interest while eliminating
some parameters from that are less relevant to the metrics of
interest. For example, the weights can be adjusted to avoid
running tests that do not result in any significant effect on
selected performance metrics.

FIG. 8 illustrates an example operational procedure for
testing in a computing environment using an automated test
generation framework. In an embodiment, an automated test
generation framework can correspond to automated test
generation framework 180 in FIG. 1.

Referring to FIG. 8, operation 800 begins the operational
procedure. Operation 800 may be followed by operation
802. Operation 802 illustrates receiving a request via an APIL.
In an embodiment, the request can be for testing of a
computing parameter.

Operation 802 may be followed by operation 804. Opera-
tion 804 illustrates generating test objectives that verify the
received request. The generation of test objectives may be
informed by analysis service 806. In various embodiments,
analysis service 806 can comprise one or more of querying
a database for historical data, expert (e.g., human) interven-
tion, and/or expert system intervention (e.g., a fitness func-
tion).

Operation 804 may be followed by operation 806. Opera-
tion 806 illustrates generating a test population that verifies
the test objectives. In an embodiment, the test population
may comprise a parameterized set of workload definitions,
configuration management definitions, and/or performance
parameters that are to be evaluated. A fitness function may
be used to define cost and exit criteria and may be consid-
ered a part of the test population. Workload definitions may
be determined as a function of the cost and configuration
parameters being tested. The configuration management
definitions may be a function of the configuration under test.

Operation 806 may be followed by operation 808. Opera-
tion 808 illustrates iteratively executing the test population.
Operation 808 may be followed by operation 810. If execu-
tion of the test population demonstrates the desired objec-
tives within an acceptable confidence level and does not
require further updates, then operation 810 may be followed
by operation 816.

If the objectives have not been achieved, then operation
810 may be followed by operation 812. Operation 812
illustrates generating a request for updated test parameters.
Operation 812 may be followed by operation 814. Operation
814 illustrates updating the test parameters. Operation 814
may be followed by operation 808. In some embodiments,
analysis service 806 may provide input to the updating of
test parameters.

Each of the processes, methods and algorithms described
in the preceding sections may be embodied in, and fully or
partially automated by, code modules executed by one or
more computers or computer processors. The code modules
may be stored on any type of non-transitory computer-
readable medium or computer storage device, such as hard

10

15

20

25

30

35

40

45

50

55

60

65

16

drives, solid state memory, optical disc and/or the like. The
processes and algorithms may be implemented partially or
wholly in application-specific circuitry. The results of the
disclosed processes and process steps may be stored, per-
sistently or otherwise, in any type of non-transitory com-
puter storage such as, e.g., volatile or non-volatile storage.

The various features and processes described above may
be used independently of one another, or may be combined
in various ways. All possible combinations and subcombi-
nations are intended to fall within the scope of this disclo-
sure. In addition, certain method or process blocks may be
omitted in some implementations. The methods and pro-
cesses described herein are also not limited to any particular
sequence, and the blocks or states relating thereto can be
performed in other sequences that are appropriate. For
example, described blocks or states may be performed in an
order other than that specifically disclosed, or multiple
blocks or states may be combined in a single block or state.
The example blocks or states may be performed in serial, in
parallel or in some other manner. Blocks or states may be
added to or removed from the disclosed example embodi-
ments. The example systems and components described
herein may be configured differently than described. For
example, elements may be added to, removed from or
rearranged compared to the disclosed example embodi-
ments.

It will also be appreciated that various items are illustrated
as being stored in memory or on storage while being used,
and that these items or portions of thereof may be transferred
between memory and other storage devices for purposes of
memory management and data integrity. Alternatively, in
other embodiments some or all of the software modules
and/or systems may execute in memory on another device
and communicate with the illustrated computing systems via
inter-computer communication. Furthermore, in some
embodiments, some or all of the systems and/or modules
may be implemented or provided in other ways, such as at
least partially in firmware and/or hardware, including, but
not limited to, one or more application-specific integrated
circuits (ASICs), standard integrated circuits, controllers
(e.g., by executing appropriate instructions, and including
microcontrollers and/or embedded controllers), field-pro-
grammable gate arrays (FPGAs), complex programmable
logic devices (CPLDs), etc. Some or all of the modules,
systems and data structures may also be stored (e.g., as
software instructions or structured data) on a computer-
readable medium, such as a hard disk, a memory, a network
or a portable media article to be read by an appropriate drive
or via an appropriate connection. The systems, modules and
data structures may also be transmitted as generated data
signals (e.g., as part of a carrier wave or other analog or
digital propagated signal) on a variety of computer-readable
transmission media, including wireless-based and wired/
cable-based media, and may take a variety of forms (e.g., as
part of a single or multiplexed analog signal, or as multiple
discrete digital packets or frames). Such computer program
products may also take other forms in other embodiments.
Accordingly, the present invention may be practiced with
other computer system configurations.

Conditional language used herein, such as, among others,
can,” “could,” “might,” “may,” “e.g.” and the like, unless
specifically stated otherwise, or otherwise understood within
the context as used, is generally intended to convey that
certain embodiments include, while other embodiments do
not include, certain features, elements and/or steps. Thus,
such conditional language is not generally intended to imply
that features, elements and/or steps are in any way required

113

US 9,436,725 Bl

17

for one or more embodiments or that one or more embodi-
ments necessarily include logic for deciding, with or without
author input or prompting, whether these features, elements
and/or steps are included or are to be performed in any
particular embodiment. The terms “comprising,” “includ-
ing,” “having” and the like are synonymous and are used
inclusively, in an open-ended fashion, and do not exclude
additional elements, features, acts, operations and so forth.
Also, the term “or” is used in its inclusive sense (and not in
its exclusive sense) so that when used, for example, to
connect a list of elements, the term “or”” means one, some or
all of the elements in the list.

While certain example embodiments have been described,
these embodiments have been presented by way of example
only, and are not intended to limit the scope of the inventions
disclosed herein. Thus, nothing in the foregoing description
is intended to imply that any particular feature, character-
istic, step, module or block is necessary or indispensable.
Indeed, the novel methods and systems described herein
may be embodied in a variety of other forms; furthermore,
various omissions, substitutions and changes in the form of
the methods and systems described herein may be made
without departing from the spirit of the inventions disclosed
herein. The accompanying claims and their equivalents are
intended to cover such forms or modifications as would fall
within the scope and spirit of certain of the inventions
disclosed herein.

What is claimed is:

1. One or more non-transitory computer-readable storage
media having collectively stored thereon executable instruc-
tions that, when executed by one or more processors of a
computer system, cause the computer system to:

select a test population based on one or more performance

metrics; and

cause execution of tests in accordance with the test

population and bias the test population to iteratively
update the test population based on results of the tests,
wherein the tests are executed on computing devices
selected from a computing environment based on avail-
ability criteria in accordance with a computing con-
figuration management function, wherein the comput-
ing configuration management function is configured to
determine a cost for removal of the selected computing
devices from the computing environment during the
execution of the tests, wherein the tests are executed
when the cost for removal of the selected computing
devices is less than a threshold.

2. The non-transitory computer-readable storage media of
claim 1, wherein the threshold is indicative of a market price
for providing computing resources on the selected comput-
ing devices.

3. The non-transitory computer-readable storage media of
claim 1, wherein the computing configuration management
function is further configured to indicate when one or more
computing devices have computing capacity available for a
test in accordance with an auto scaling function.

4. A computer-implemented method for computing device
testing comprising:

40

45

18

selecting a test population based on one or more perfor-

mance metrics; and

causing execution of tests in accordance with the test

population and bias the test population to iteratively
update the test population based on results of the tests,
wherein the tests are executed on computing devices
selected from a computing environment based on avail-
ability criteria in accordance with a computing con-
figuration management function, wherein the comput-
ing configuration management function is configured to
determine a cost for removal of the selected computing
devices from the computing environment during the
execution of the tests, wherein the tests are executed
when the cost for removal of the selected computing
devices is less than a threshold.

5. The computer-implemented method of claim 4,
wherein the threshold is indicative of a market price for
providing computing resources on the selected computing
devices.

6. The computer-implemented method of claim 4,
wherein the computing configuration management function
is further configured to indicate when one or more comput-
ing devices have computing capacity available for a test in
accordance with an auto scaling function.

7. A computing system for computing device testing
comprising:

at least one computing processor; and

at least one memory in communication with the at least

one processor, the at least one memory having stored

therein computer instructions that, upon execution by

the at least one processor, cause at least cause the

computing system to:

select a test population based on one or more perfor-
mance metrics; and

cause execution of tests in accordance with the test
population and bias the test population to iteratively
update the test population based on results of the
tests, wherein the tests are executed on computing
devices selected from a computing environment
based on availability criteria in accordance with a
computing configuration management function,
wherein the computing configuration management
function is configured to determine a cost for
removal of the selected computing devices from the
computing environment during the execution of the
tests, wherein the tests are executed when the cost for
removal of the selected computing devices is less
than a threshold.

8. The computing system of claim 7, wherein the thresh-
old is indicative of a market price for providing computing
resources on the selected computing devices.

9. The computing system of claim 7, wherein the com-
puting configuration management function is further con-
figured to indicate when one or more computing devices
have computing capacity available for a test in accordance
with an auto scaling function.

#* #* #* #* #*

